Skip to content
Architecture, urban planning and research in, on and next to water
+31 70 39 44 234     info@waterstudio.nl

Koen Olthuis, Hong Kong design week

By Today’s living
BODW
February.2015

 

The business of Design Week (BODW), organized by the Hong Kong Design Centre, has been a key event for the local design community since 2002. BODW 2014 saw the arrival of leading designers from Sweden and all over the world,, carrying with them invaluable insights from the fields of architecture, fashion, technology and culture. Today’s Living talked with six of the design heavyweights present at this year’s event, namely Anna Hessle, Erik Nissen Johanson, Koen Olthuis, Lisa Lindstrom, Thomas Eriksson and Marcus Engman. In this issue, we introduce you to three of these interior and architectural leaders, all of whom are masters of their industry.

 

 

Click here for the full article

New Water Villa: ver van de functionele Nederlandse architectuur

By Bob Witman
Volkskrant
October.2014

 

Opgetrokken uit corian in plaats van baksteen, bochtig in plaats van strak. Tussen de kassen van Naaldwijk staat een fraai ‘net geen herenhuis’.

De New Water Villa. Beeld Koen Olthuis

Het ziet eruit als een villa waar James Bond graag cocktails drinkt, met precies de goede space age-achtige uitstraling die zo populair was in jaren zestig, toen we de maan bewandelden. New Water Villa ligt in de polder bij Naaldwijk, verscholen achter kassen. Een woning in de vorm van een boemerang, geheel opgetrokken uit wit corian, een composiet dat vrijwel alleen nog wordt toegepast als meubelmateriaal. Met zijn U-vormige hoeklijsten oogt de bungalow als een sexy ufo.

New Water Villa is een ontwerp van Koen Olthuis van architectenbureau Waterstudio. Net als een ander, onlangs gebouwd spectaculair woonhuis, Villa Kogelhof van Paul de Ruiter Architecten in Zeeland, is ook deze villa het resultaat van dapper particulier opdrachtgeverschap. Olthuis kreeg van de bewoners de vrije hand: het huis, het interieur en de tuin: hij mocht het allemaal vormgeven. De kwekersfamilie uit Naaldwijk wilde een herenhuis, maar liet zich verrassen.

Een herenhuis is het niet geworden. Ze kregen geen baksteen, maar wit composiet met glas en hout. Geen rechte plattegrond met gangen en kamertjes, maar golvende vertrekken die naadloos in elkaar overlopen. Geen oprijlaan met klinkers, maar asfalt. Geen Franse siertuin, maar kunstgras en hier en daar een polletje groen.

Architect Olthuis bouwt niet vaak op land. Zijn niche is drijvende architectuur. In Nederland, maar ook in het buitenland, waar hij het materiaal corian eerder toepaste voor stadsbouw op water bij de laaggelegen Malediven.

Corian is een relatief nieuwe kunststof, althans, in het buitengebruik. Dat is altijd tricky, omdat het onzeker is hoe het veroudert. Maar corian is keihard, duur, polijstbaar en houdt zich volgens Olthuis uitstekend, zelfs in een zoutwateromgeving.

De New Water Villa. Beeld Koen Olthuis

Onorthodoxie

Wat opvalt in Naaldwijk is niet alleen de onorthodoxie van het materiaal, maar ook de vorm. De villa heeft een heel leesbare contour, bijna kinderlijk eenvoudig. ‘Readable architecture’, noemt het bureau dat zelf.

Sensueel, makkelijk na te tekenen en ver weg van de functionele architectuur die in Nederland gangbaar is. Waar vorm altijd een ratio heeft en mooi nooit alleen maar mooi mag zijn. Dit huis is eerder benaderd als een product waarbij vorm en materiaal de dienst uitmaken, dan als een werk van architectuur waar volume en schaal leidend zijn.

Olthuis is opgeleid als industrieel ontwerper en als architect. Het is verleidelijk om in het Zuid-Hollandse kassenlandschap te zeggen: ja-dat-kun-je-wel-zien-ook. Zijn aanpak van de buitenzijde loopt door in het interieur, waar hij hetzelfde materiaal gebruikt als buiten: een keukenblad van gebogen corian, de keukenkastjes en het corian haardmeubel zijn bekleed met gecapitonneerde stof.

De slaapruimtes zitten in het souterrain, omdat boven het maaiveld slechts een beperkt aantal vierkante meters mocht worden bebouwd. De tuin is oorverdovend simpel, met een strookje kunstgras tegen de voet van de gevel aan, om de scheiding tussen het groen en het witte corian zo scherp mogelijk te houden.

De boemerang ligt met de holle kant naar het water en de polder gericht met een doorlopende glaswand die op een exceptionele wijze in een hoek van 90 graden buigt. Dat glas geeft, zowel buiten als binnen, onvermoede weerkaatsingen waardoor je je soms in het lachspiegelhuis van de kermis waant.

De bolle zijde van de villa, gekeerd naar de oprijlaan, is relatief gesloten. De elleboogpunt van de boemerang herbergt de hoofdentree. De bewoners gingen akkoord met de moderniteiten van de architect, maar eisten wel een entree. Dus kregen ze een voordeur met een statig natuurstenen trapje.

Het bochtenwerk is cruciaal. Het zit in het interieur, het glas en natuurlijk in de kopse buitenzijdes, die de villa het karakteristiek geven van twee platgedrukte U’s die op hun zij liggen. De keuze voor die rondingen leidde voor de architect automatisch tot het materiaal corian. Dat kun je verhitten en in een mal gieten, waardoor je volmaakt gladde rondingen krijgt. Iets wat je met steen nooit kunt nadoen,

De binnenruimte voelt prettig aan, door het bochtenwerk ontstaat een natuurlijke compartimentering. Het gebogen glas is spectaculair, maar dat corian is wel heel erg wit. Je loopt constant rond met de gedachte en-wie-moet-dat-allemaal-schoonhouden?

Maar volgens de corianfabrikant is het onderhoudsvriendelijk en duurzaam, hoewel kostbaar in de basisprijs. Voor de vorm van het huis is het corian ononvertroffen. Het is van dichtbij net zo smooth als op de foto. Dat kun je niet altijd zeggen in de architectuur.

De New Water Villa. Beeld Koen Olthuis

 

Click here to read the article

Water Architect Koen Olthuis on How to Embrace Rising Sea Levels

Inhabitat, Bridgette Meinhold, July 2014

Sea levels are rising, floods are prevalent, and cities are at greater risk than ever due to climate change. Now that we’ve accepted these facts, it’s time to design and build more resilient structures. Koen Olthuis, one of the most forward-thinking and innovative architects out there, has a solution for rising sea levels. His solution: Embrace the water by incorporating it into our cities; creating resilient buildings and infrastructure that can handle extreme flooding, heavy rains, and higher water. Olthuis and his team at Waterstudio.nl have been showing coastal communities the benefits of building on the water. With countries like the Maldives and Kiribati having to build oceanside or move in order to escape rising sea levels, New York learning to battle storm surges, and Jakarta dealing with massive flooding, embracing water may be our only option for survival. We chatted with Olthuis about how coastal cities can become more resilient in the face of change—read on for our interview!

Despite his busy travel schedule, Olthuis had a chance to answer our questions with a great amount of detail and thought. Not only is Olthuis a leader in designing floating architecture, he’s the most-interviewed architect on Inhabitat. We think very highly of his work and ideas, and we think you’ll agree after reading through his thoughtful answers about the pressing issue of climate change. Don’t worry, it’s not all gloom and doom though—Olthuis proposes a future full of hope and promise!

Inhabitat: What does climate change mean for cities on the coast, and how serious is a sea level rise of 1 meter?

Koen: I think that climate change is a serious problem for these cities because most of them have been built upon the wrong parameters. For centuries, sea levels and climate have been relatively stable, which has brought us urban plans and built environments that are too static—like a one-trick pony for one certain set of conditions. With the arrival of uncertainty in , we have to rethink our coastal cities.

The threat that climate change brings is not just the physical threat of floods and drowning, but also the financial impact of destroyed property and businesses. Through the last century, waterfront development has increased in value as well as assets. Flood threats will put pressure on available dry space and reset the parameters for which parts of a city are desirable, and which are dangerous.

The effect of a one-meter sea level rise (without any adjustment to coastal cities as they stand today) would completely reset maps and financial stability in many of the world’s biggest waterfronts. New York, Miami, and Guangzhou would lose an important part of their real estate to the water. Countries like Bangladesh and the Philippines would have to give up lots of land. In the Netherlands, many of the water defense systems that protect the country under sea level will no longer be safe.

The question of how serious a one-meter sea level rise would be cannot be answered without placing this question in a certain timeframe. Although cities may appear static, they’re in constant change. The lifespan of urban components like infrastructure, normal buildings, and water defense measurements isn’t more than 50-100 years. This means that if the change occurs within the next 50-100 years, cities have time to grow into components designed upon the new parameters. If the rise occurs faster, cities won’t have time to adapt naturally and problems will occur. The problem is that because sea level rise is quite slow, governments find it hard to deal with a long timeframe when short-term strategies will lead to immediate benefits.

Inhabitat: What do coastal cities need to be thinking about and planning for in order to prepare for the inundation of water?

Koen: First, they have to design plans with flexibility—not solely for today’s conditions. Second, they might be better off embracing the water instead of fighting it, seeing urban water as a chance to upgrade our cities rather than a side effect.

I think that a resilient city isn’t one that prepares for the water to come, but one that allows it to expand. By letting in water and making it part of the city, rising levels or storm conditions will only mean working with a bit more water instead of the big shock that comes when conditions go from dry to flooded.

Regarding planning, coastal cities should focus on which areas should be kept absolutely dry, which can be changed from dry to wet, and which existing waters can be used for expansion. The future of resilient coastal cities is on the water, and metropolises like London, Miami, Tokyo, and Jakarta will expand their territory by 5 to 10 percent on urban waters in the next 25 years.

Inhabitat: Can you give us examples of any cities making promising strides to become more resilient?

Koen: Many are slowly taking defensive measures to become more resilient, but there is one that seems to use a highly innovative path: Jakarta. This capital of 10 million is suffering not only from climate change, but also from urbanization. The soil is sinking at a speed of 15 centimeters per year, which raises flood risks and effects, and it’s getting polluted with saltwater, which has a huge effect on fresh water reserves. Instead of building only higher water defense systems like dikes, which wouldn’t solve the saltwater problem, they’ve chosen to embrace more innovative solutions provided by Dutch engineers and urban planners. The solution focuses on closing Jakarta bay with a dike, turning it into one big 100 km2 wet polder; a size needed to provide enough storage area for extreme weather conditions.

On this dam, a city of a million people will be built facing the old waterfront of Jakarta on one side and the ocean on the other. For architects focusing on floating architecture, this kind of artificial large-scale wet polder provides a big opportunity: in order to keep the storage as big as 100 km2 you cannot build in the water, but floating structures have no effect on storage capacity. Jakarta can become one of the most resilient coastal cities of Asia and still make money from these measures—fighting water with water by adding the storage polder.

Inhabitat: If you were put in charge of making, say New York City, resilient to flooding and climate change, what strategies would you implement?

Koen: New York is one of the most iconic cities in the world, and Manhattan is the benchmark for high-density urban developments, but this city has also evolved to accommodate the surge for space. The enormous land expansion over the river beginning in the 17th century provided the city with new space. The elevator facilitated building into the air, and the metro system took advantage of space beneath the city. Without any of these innovations, Manhattan would look completely different. The lesson here is that standing still doesn’t always benefit cities, and innovations (daunting though they may appear) can bring new prosperity.

The biggest problem that New York will have to face isn’t a steady one-meter sea level rise—because that can be overcome with a meter-high levee—but the effects of extreme weather. Storm conditions like Hurricane Sandy will raise water a few meters and yield heavy rainfall that cannot be transported to the river, since the river itself will rise to record levels. To keep the subway system dry in normal conditions, huge amounts of water have to be pumped out; any additional water could make the system flood.

New Yorkers haven’t embraced the waterfront as much other coastal cities. The view inside is more important than outside and the most valuable real estate can be found around Central Park. [There are] no nice boulevards like in the south of France; nice beaches or green habitats can be found at their manmade border between land and water.

Having said this, I would bring the strategy of fighting water with water to New York and start wetting up the city. If we raise the level of the water ourselves by a few meters, it won’t be any problem when nature does it. To raise the level of the river and still use it as such is impossible, but there’s another Dutch solution that could work. In Holland, existing polders are surrounded by artificial canals. The water in these canals is a few meters higher than the polder waters. They aren’t dug into the landscape, but put on top of the landscape with a dike on both sides to keep the water in. Water from the polder is pumped into the canal and then transported to the rivers or the sea. The canals can be artificially controlled, providing a kind of buffer, and can also be used for transport, and waterside houses. I’d like to create a necklace of small, connected artificial lakes around Manhattan; a system much like an extra canal with a higher water level than the surrounding rivers. This canal would be divided into sections that could be closed separately.

This new zone will take the place of the existing harbor quay—the river width wouldn’t be affected, but the result would be like a set of airbags around the city. In case of high tide, these cells would serve as storage polders that could release water when the storm had passed. These cells would change the edge of Manhattan: the water cells would look like small lakes, and new settlements could be built on the levees dividing them from the river. These lakes would all be connected, and they’d only be closed off from each other during storm conditions, like compartments in large cruise ships.

The artificial lakes would fill the space now used by the river docks, and have a flexible water level that would provide an enormous storage zone, providing safety encroaching seawater. As I imagine, there would be as many as 40-50 of these lakes, each as long as 4-6 blocks. Lakes for leisure, for green floating communities, lakes with harbors—the greener the better.

Inhabitat: With countries like the Maldives and Kiribati losing their land to rising sea levels, how do they respond and provide for their citizens? Buy property elsewhere or construct floating cities? Are there estimates on how much it would cost to construct floating countries?

Koen: The Maldives and Kiribati are both series of small islands in the middle of the ocean, which will be highly affected by any sea level rise. Without enough dry land available, these countries have to make the choice to become climate refugees or adopt floating technologies and become climate innovators.

In the Maldives, Waterstudio has designed floating island resorts and a golf course for developer Dutch Docklands. They are building a joint venture with the government of the Maldives, both as a tool to increase new possibilities for tourism, and to reinforce society with long-term floating developments. Floating islands with high-density affordable housing could be added to the existing islands to provide space and safety. Floating developments are scar-less and mustn’t have any impact on marine environment during or after their lifespan.

This could lead to floating countries, keeping in mind that the Maldives has 300,000 inhabitants. The cost of these floating islands is comparable with dredging islands, only that dredging destroys sea life and coral reefs. If I must make a reasonable guess I would say around $25,000 per person,  so for a city of 20,000 people it would cost 500 million dollars. This might sound like a lot, but it’s quite reasonable compared to evacuating a nation.

Inhabitat: How has your work changed over the years in response to the pressing needs of climate change?

Koen: The possibility of improving coastal cities worldwide with the implementation of floating urban components is just so challenging. It feels like we have only just discovered a small part of the potential that water could bring in making cities more resilient, safe, and flexible. I believe that projects like these will set new benchmarks for cities that would otherwise be in trouble because of climate change.

Our research seeks to change perception and dogmatic rules that traditional planners from the static era have put on us. I think that just in the last two years, iconic designs like the floating cruise terminal have developed an extra dimension—they’re part of a bigger vision that looks beyond iconic architecture to the economical impact it could bring.

My work has gone from designing for rich individuals to designing for the poor. We now design strategies for cities that have to adjust their planning approach because of shifting conditions due to climate change. The focus on slums has opened a whole new window of opportunity and has brought me in contact with many people who believe architects must use their influence and creativity to make a change for millions instead of only the happy few.

Inhabitat: Tell us briefly about your latest project, City Apps, and how it can help cities deal with climate change.

Koen: Miami and New York are the cities most threatened by sea level rise in terms of exposed real estate, but the populations most threatened by sea level rise  would be in Mumbai, Dhaka, and Calcutta. In these cities, millions live in dense slums close to water. In fact, one billion people worldwide are living in slums, and half of them can be classified as wet slums because of their relation to the water. People living in these areas are terribly vulnerable to flood danger. Efforts to help these cities should not focus on protecting the built environment, but on protecting essential functions during and immediately after floods. Slums can be helped by upgrading programs to improve life conditions for 100 million people before 2020, as stated in the 2003 UN habitat millennium goal.

Programs in wet slums are not generally upgraded, because investing in them is a risky business, as floods could potentially destroy any functions built in areas close to the water. We want to use our technical knowledge to provide floating functions on water for these wet slums.

Just as you can download apps on your smartphone according to your changing needs, you can adjust functionality in a slum by adding functions with City Apps. These are floating developments based on standard sea-freight containers, and because of their flexibility and small size, they are suitable for installing and upgrading sanitation, housing, and communication.

Inhabitat: What advances in technology, design, or materials have helped push your architecture forward?

Koen: In Holland, we have always been close to maritime technology. It is very exciting to take these technologies that are meant for things like offshore oil industries and use them to create a floating habitat for animals, birds and underwater creatures like the Sea Tree does.

I think the Internet and 3D visualization tools have really pushed my architecture forward because in an industry as young as floating architecture, it is only the power of visualization that can show the impact of floating developments for the city of tomorrow. The fact that we can spread our ideas around the world and get feedback, response, and help because of the digital revolution is unbelievable. If I would have started twenty years ago I probably wouldn’t have reached more than half of Holland, and Holland isn’t that big.

My designs are what we call “readable architecture”—product-like solutions that ask for simple and clear details. Not every material is suitable for that, and over the last three years we discovered sustainable composites that suit the architectural expression I want, and are ideal for projects in salty environments that require low maintenance.

But the most important advantage in technology is logistics. The fact that we now can produce our floating houses and developments in different countries and assemble them on the water without affecting the environment makes it possible for us to rethink economical models for large-scale production.

Inhabitat: What are you most excited about right now in this field?

Koen: I am most excited about how global mobile assets will enable cities in developing countries to leapfrog to higher prosperity. These assets are large-scale floating developments that are being invested in by very rich countries like Qatar, Saudi Arabia, or Norway. These countries have so much money to invest that they cannot spend it all in their own country. Instead of investing only in wealthy world capitals, they’ll invest in flexible real estate, which can be leased to coastal cities.

It’ll start with functions like floating hotels and stadiums for cities that want to organize the Olympic Games but who cannot afford the investment. But it will rapidly evolve into an industry where cities that have been hit by climate change-related disasters can lease an entire set of functions like energy plants, hospitals, schools, and sanitation. Just like we do with our Floating City Apps for wet slums, there will be large-scale solutions to instantly upgrade cities and help communities recover. I see floating harbors and even small floating airports that’ll provide instant infrastructure to cities recovering from natural disasters.

The enormous financial capacity of these countries enables them to build global mobile assets up front on stock. So, imagine a safe floating location somewhere in Asia composed of completely functional urban components ready to be towed to any disaster area that appears. All the technology and money is already available—it’s only a matter of changing perception before floating developments are an essential part of the climate change reality that’s waiting for us. I say that not as a negative sentiment, because I believe that change will lead to innovation that will bring prosperity. The future is wet, the future is good!

Click here for the website

BBC News: Flood-proof homes the Dutch way

BBC News featured Koen Olthuis and Waterstudio’s Watervilla IJburg

As thousands in the UK continue to deal with the misery of flooding, the Netherlands is pioneering the field of flood-proof homes.

Projects include floating homes, which rise and fall with the water levels, and amphibious homes that sit on dry land but float is water encroaches.

While the amphibious houses cost about 20% more than conventional buildings, the Dutch have learned the investment is still cheaper than that of cleaning up afterwards.

Click here for the website

Villa IJburg plot 3

Archilovers, Jan 2014

This plan was designed for an urban water-development area in Amsterdam. Strict limitations of the building envelope and 2,5 storeys, while maximizing effective floor space for the principal, forced the designers to come up with a strong architectural principle that organized the dwelling with only modest means. The location at the end of the pier, where the view should be focused on the water while shielding off the dwelling from adjacent houses, provided the initial starting point. The architectural concept comprises of two basic shapes, filled in with glass panels. The main volume is enveloped by a white stucco slab that runs along the 1e storey floor, covers the entire back wall and roof, forming a continuous line that frames the living area and the open view. This simple yet elegant shape is complemented by a second shape in wood formed by the terrace floor and curving up to form the banister. Together, these two simple gestures define a distinct, almost iconic appearance. On the lower floor, which is partly below waterlevel, three bedrooms and the bathroom are situated. The ground floor is largely an open layout where only the toilet and some storage space separate the entrance area from the main space. Two large swinging doors can be used to close off the hallway.A neatly designed cupboard containing television is the only main element in the open space. Behind this, two stairs lead to the lower storey and to the working-area on the top floor. The ceiling of the living room is made in the same wood as the outside shape to really carry through the concept of the two curved shapes making up the dwelling. The top floor only occupies half the floor-surface, creating a wide terrace where again the wooden decking continues inside. When the large sliding doors are open, inside and outside space blend together.

Click here to read the article

Click here for the website

Against the tide

Fast Company, Jeff Chu, November 2013

For centuries, the Netherlands has suffered from catastrophic floods. As the rest of the world now reckons with the same fate, the Dutch are sharing–and selling–what they’ve learned.

Huib de Vriend was 5 years old when the great flood of 1953 hit. It was a chilly Saturday night, and the local radio stations had gone off the air at their usual hour near bedtime, just before the full force of the storm blew in. What shook young Huib more than the whistle of the wind or the thrum of the rain was the panic in his grandmother’s voice. “She was yelling: ‘The water is coming! The water is coming!’ ” he recalls. That was when he knew something was wrong. His grandmother was usually a voice of calm in the family.

They fled to the attic. Huib’s father ventured down to the ground floor, which had filled like a bathtub, to raid the pantry for provisions. A few days later, soldiers arrived in dinghies to help the de Vriends evacuate to their local church, which was built on the village’s highest ground; not long after, they were moved by rail to a town 10 miles away, where Huib attended kindergarten for several weeks before his family was allowed to return home. “Only later did I realize that my grandmother belonged to the generations with an inbred fear of water,” he says. “She never even learned to swim. It was not normal to swim. So you can imagine that even a meter of water was enough to make them nervous.”

The de Vriends survived, but more than 1,800 of their compatriots did not. Three hundred thousand Dutch were left homeless, and one-tenth of the nation’s farmland flooded. The famously pragmatic Queen Juliana, who had banned her subjects from bowing and curtseying to her, pulled on rubber boots to join the relief effort. “God,” she declared, “now calls upon our powers of resilience.”

In the Netherlands, that resilience ultimately meant far more than a season or two of furious rebuilding. De Vriend grew up to become a coastal and fluvial morphologist, a kind of scientist that studies the dynamics of shores and rivers. Though he insists the floodwaters did not set his career path, he acknowledges that “you don’t forget something like that.” (He also learned to swim.) He meanwhile became part of a growing army of engineers, designers, and scientists who since 1953 have made it their life’s mission to work with water, as the Netherlands built itself into the world’s premier laboratory for how to tame the rivers and the seas. Today, the country’s ideas and expertise may be its most valuable export. “Retreat is not an option, though we know it’s dangerous. The only option is to protect ourselves,” says Free University of Amsterdam professor Jeroen Aerts, the world’s foremost expert in flood-risk management. “If we invest right now in innovative measures, we can avoid a lot of damage in the future.”

Visitors who come to the Netherlands in the hopes of seeing a foolproof system of flood control that they can easily duplicate back in their home countries are bound to be disappointed. The Dutch have learned the hard way that no single solution will suffice. Their rebuilding efforts since 1953 have evolved away from post-disaster clichés–We’ll show the storm who’s boss!–to something far more sophisticated. What you see there now, especially what has been built in the past few years, is indeed the architecture of the future, as the fight against rising tides goes global. But it’s also the attitude of the future. The Dutch have lately been working with nature instead of battling it, lowering barriers against the water instead of raising them. They’re harnessing the power of the cloud–enormous amounts of data and cutting-edge computer modeling–to predict the consequences of the clouds. They’re building seawalls so beautiful you wouldn’t recognize them. And as I discovered, the most important lessons they are trying to impart might not be about dikes and dunes at all.

Nearly half of the world’s population lives within 60 miles of the sea, and hundreds of millions more reside in river valleys. In Hong Kong and Singapore, New York and Shanghai, thousands of acres of new waterfront land have been created through the magic buildup of landfill–and then stacked with luxury condos and gleaming office towers. Yet the risk of coastal living has grown in lockstep with that land’s soaring value. Seas are rising. And land is sinking. The soil under Jakarta, Indonesia, for instance, drained steadily of groundwater, is collapsing 4 inches a year.

As scientists predict a wetter, stormier future for much of the planet, the Dutch have become a nationwide consulting company, fanning across the world to talk about water. They are working on water-related projects from the Mississippi to the Mekong, and their thinking was a cornerstone of New York’s $20 billion post–Hurricane Sandy protection plan. “We are branding this knowledge around the globe, and we are benefiting from it,” says Piet Dircke, who is widely known as the “water guru” at the Amsterdam-based engineering-and-consulting firm Arcadis. “You don’t need too many Dutch,” he says, “but a few can help you a little bit!” Dircke is a jovial evangelist for better water management, who speaks of dikes with a passion usually reserved for football teams and refers to New Orleans’s revamped levees as “absolutely fabulous!” He spends about 200 days a year away from home, and his recent itinerary reflects the demand for Dutch help: Bangkok, Jakarta, Ho Chi Minh City, Dhaka, Shanghai, New York, New Orleans, Los Angeles, San Francisco.

When Dircke started at Arcadis 20 years ago, it was mainly a Dutch company–“95% of our business was Dutch,” he says. Last year, just 12% of the firm’s $3.35 billion in revenue came from the Netherlands; the U.S. was by far its largest market. Arcadis is working with the Army Corps of Engineers on wetlands rejuvenation in the Mississippi Delta. It is helping to restore the Los Angeles River’s natural flow. And it did hydrological-modeling work for the Bloomberg administration on Jamaica Bay in New York, hoping it will lead to more post-Sandy flood-protection business. “If I were a New Yorker, I would be very excited,” he says. “How fantastically interesting!”

And for the Dutch, how fantastically lucrative. It’s undeniable, says Matthijs van Ledden, an executive at the engineering firm Royal HaskoningDHV, that the surge in Dutch business is closely related to the surge of global disasters. After Katrina, van Ledden moved to New Orleans for four years to lead a team that helped the Army Corps strengthen the city’s levees. Governments fund most of the water business, but lately, Royal HaskoningDHV has seen strong growth in corporate spending, too. In Thailand the 2011 floods crippled factories of multinationals like Honda and Canon, stalling their supply chains. Today, they’re devising their own risk-reduction plans. “They could wait for the government,” van Ledden says. But in many locations they are choosing to move forward independently, and as fast as possible.

While these Dutch companies are competitors, they also collaborate. Arcadis, Royal HaskoningDHV, and a third major Dutch contractor, Boskalis, won business in Louisiana after teaming up with the Dutch government on a post-Katrina plan that offered the Army Corps ideas for rebuilding. They did the same for New York after Sandy last year. All three companies also belong to a research consortium that is testing new flood-protection solutions in the Netherlands. Meanwhile, five smaller engineering and design firms have banded to form an export-focused group called Dutch Water Design, which now has projects in Belgium, Brazil, and India.

Dutch ambitions go well beyond retrofitting. Architect Koen Olthuis’s atelier, Waterstudio.nl, does only water-based projects and has designed several floating houses in the Netherlands. Now, in the Maldives, he–in partnership with the developer Dutch Docklands–is building a resort, complete with an 18-hole golf course, that will float entirely on a Styrofoam-and-concrete foundation. He sees it as an early step into a wholly new market; eventually, he’d like to build floating housing for the poor in the Maldives and Bangladesh. “Building on water gives so much more freedom than land,” Olthuis says. “The next step is not going higher into the air, like 50 or 100 years ago. It’s going over the water.”

Such futuristic talk may reinforce the Netherlands’s reputation as a magical nation of water whisperers, a notion that van Ledden finds laughable. When he lived in New Orleans, he says, some people spoke to him as if he were some sort of Dutch saint. “People look at you as if, when you touch something, everything will become dry. But we need to be honest. It took us about 10 centuries to come to the conclusion that we needed to develop a long-term strategy, because short-term measures did not work.” Indeed, his homeland suffered gravely to get all this expertise–and all this business.

here are 16 million Dutch crammed onto a piece of waterlogged land that, if it were part of the U.S., would be one of the smallest states. “Everyone sees the Netherlands as a place with people who know how to deal with all this,” says Taco Kuijers, a designer at the urban-design firm Posad. “But we’re not geniuses. We’ve just learned a lot from our mistakes. And we’ve learned slowly.”
If you praise the Dutch for being “ahead” in flood protection, you must also acknowledge that they have been “ahead” in waterborne woe. They’ve been losing lives to floods long before the 20th century–the killed as many as 10,000 people and destroyed hundreds of thousands of homes. Perversely, St. Elizabeth is the patron saint of widows, dying children, and the homeless.

Still, it was the 1953 flood–a Netherlandish Katrina–that truly mobilized the country. It inspired unprecedented investment in a massive, multidecade project, known as the Deltaworks, to fortify the coast. Traditional dike-building materials–clay, sand, fear–were replaced by steel, concrete, and confidence in modern engineering. Rotterdam got a new guardian angel, the Maeslantkering, which looks like a giant drawbridge toppled sideways into the water. Thousands of tourists visit each year to marvel at its wings–gates, each as wide as the Eiffel Tower is tall, that swing shut to protect Europe’s largest port. The Delta­works effort also led to the 5.6-mile-long, $3.5 billion Oosterscheldekering, completed in 1986, which forms the world’s largest storm-surge barrier. A monument at one end captures the Dutch sense of conquest-by-construction: hier gaan over het tij de maan de wind en wij–“Here the tide is ruled by the wind, the moon, and us.”

Huib de Vriend, as an academic at the think tank Delft Hydraulics, built models predicting how water would flow through and past the Oosterscheldekering. He also tracked how the barrier disrupted the flow of sand needed to replenish tidal shoals and beaches that naturally help to slow waves and soften storms. He says, in professor-speak, that the shoals “evolved negatively” because of the Oosterscheldekering. In laymen’s terms, they shrank because they didn’t get enough sand.

Dutch law compels the government to maintain the coastline at 1990 levels. This is politically sensible and ecologically stupid–a waterfront home may seem permanent, but shorelines shift. This strategy, which keeps the beach a half-mile wide in places, requires a costly annual deposit of 1 million cubic meters of sand. Which compelled a group of scientists including de Vriend and his Delft colleague Marcel Stive to solve an interesting puzzle: Can nature be harnessed to help do this unnatural thing?

Two years ago, the Sand Engine was born. Twenty million cubic meters of sand were mounded to form a half-mile-wide, 1.25-mile-long beach extension. Hydrologists and engineers had calculated that currents would eventually move 60% of the sand northward, 40% south. “Look what happens if you build a sand castle at the edge of the surf and the tide comes in,” says Stive. “You see the wave diffuse around it. The sand is not gone. It just spreads in all directions. If a sand castle disappears in half an hour, the Sand Engine is supposed to last 20 years.”

The Sand Engine, which is shaped roughly like a stiletto stepping onto the existing shoreline, does mostly what its designers expected: It buffers a vulnerable coast while delivering recreational and ecological benefits. The lagoon created by the “heel” has become a popular kite-surfing venue as well as an important habitat for juvenile flatfish. Flocks of gulls loll on the sand. Sea grass has taken root, dotting the white expanse with green. The sand has traveled roughly according to plan. Already, local governments in France and England have initiated projects mimicking the Dutch design.

This might be premature: The Sand Engine team also expects surprises. “All models are built with inputs, a system, and outputs. But what if you don’t know how the inputs will vary?” says de Vriend, who is now 66. Usually he has a gentle, grandfatherly mien and thinks for a few beats before speaking. But as we stand on an escarpment carved by the waves since his last visit to the Sand Engine, he seems like a giddy 4-year-old. “Isn’t this fantastic?” he tells me. “The dynamics are always changing, and it’s very challenging to understand. Models are never more than what we already know.”

Six miles north of the Sand Engine sits the district of Scheveningen, which has two distinct stretches of seafront. The northern section is chockablock with cheap souvenir stands and neon-lit bars. On the southern stretch, the sky feels bigger. Construction crews here are finishing a new, $100 million promenade that’s all bright and clean, bleached wood and powder-blue steel, as if the scene had been run through an Instagram filter called “New Dutch.”

There was no dike here before–it was one of the coast’s least-protected sections–and only the most knowing observer would notice the one there now. The rest of us would see an undulating waterfront park, sloping seaward from the dunes to a one-way street for cars, then to a bike path, then to a pedestrian area and beach. The largest project of architect Age Fluitman’s career, it is an artful demonstration of how to integrate traditional beachside amenities with sophisticated protections against future storms. “Making a dike here was quite extreme. You want something 10 or 12 meters high, and 30 meters wide–a big thing!” says Fluitman as we stroll the promenade. Dressed in a half-buttoned check shirt, cargo shorts, and flip-flops, he looks more like a beachgoer than a boardwalk builder. Originally, he explains, the government hired Spanish architect Manuel de Solà-Morales, who was renowned for rejuvenating Barcelona’s waterfront. Fluitman worked with Solà-Morales and took over after his boss died last year.

Building a multilayered dike hidden under a beachfront is not easy. Regulators decreed that no single object on this dike, which is designed to withstand a storm even stronger than the one in 1953, could weigh more than 700 kilograms; anything heavier could puncture the seawall mid-storm. Fluitman, lanky and athletic, lopes over to a pedestrian bridge linking the dike-top roadway with the pedestrian promenade. “It looks like steel, right? But it’s actually built of composites,” he says, beckoning me to join him underneath the bridge. Crouching, he points out the small nuts and bolts studding the ends of the beams, explaining that they’re calibrated to detach in a major storm surge. “This bridge can support 500 people. But what other bridge in the world is designed to fall apart into hundreds of pieces?” At one point during the planning process, he adds, one local official asked, “Can’t we plant some palm trees?” In response, Fluitman designed 36-foot-tall lampposts crowned with arms reaching in different directions–stylized palm trees. He smiles. “These fall apart too.”

Fluitman seems especially pleased by the contours of his promenade. He came to this beach as a boy and recalls it as straight and flat; given the chance to redesign it as an adult (he’s 36), he created horizontal and vertical curves to increase visual drama. “See these gentle hills?” Fluitman says. “This makes you interested: What’s over there? What’s beyond that bend?” He discovered that Dutch regulators didn’t want a different beach. They rejected the curved proposal, arguing that straighter beaches make stronger barriers. But Fluitman asked for evidence. He suggested that rather than rely on conventional wisdom, they do some new modeling. And in the end, he was right: A curvy coast dissipates wave forces in a way that a straight seawall cannot.

The Dutch love data. Fluitman got his curves because of it. And a Dutch sense of caution has compelled everyone working in the field of flood control to collect and analyze immense amounts of it to make a watertight case. The government has mapped by air, to astonishing detail with laser and radar, the entirety of the nation’s topography. That information has inspired one of the most promising–and exportable–new innovations: 3Di, a cloud-based system that can simulate the effects of a rainstorm or a levee breach, storm surge or a water-main break. “The Netherlands is very conservative. We think we can solve everything with a bit of sand,” says Jan-Maarten Verbree, who heads IT at Nelen & Schuurmans, the water-focused consultancy behind 3Di. “But we say that with a bit of IT, you can increase safety even more.”

The computer system is based on the work of a professor at the Technical University of Delft. Wytze Schuurmans, Nelen & Schuurmans’s principal, says 3Di is 1,000 times faster–and can be accurate “more or less to the inch”–than any conventional flood models currently in use. In the Nelen & Schuurmans lab, a Spartan collection of desks located in a house in the medieval heart of Utrecht, Verbree and his colleague Olga Pleumeekers hover over an on-screen projection of the city of Delft. Pleumeekers decides to dump nearly 4 inches of rain on Delft in just one hour, “just to see.” This is not realistic, she tells me. “It’s a lot of water.”

She zooms in on a neighborhood between a key canal and Delft’s Cathedral. Within minutes, the floodwaters reveal the town’s topography–though the canal has spilled its banks, some canal-side streets remain dry while roads further inland are awash. Within three hours, water laps at the Cathedral’s apse, and as Pleumeekers zooms out for a regional view, a spreading quilt of blue reveals the extent of the storm. Any sane person would want to flee, but not northward–the model shows that the A4, the main artery to Amsterdam, is now underwater too.

The goal here goes beyond disaster planning for the Netherlands; the firm hopes to build a web-based version of 3Di that would allow a Manhattan building manager to simulate, say, a hurricane’s effect on his apartment tower. What 3Di most resembles is an aqua-centric version of SimCity–“but with realistic data and calculations,” says Verbree. When Pleumeekers switches to a machine holding data for Long Island–less detailed than what it has for the Netherlands, but sufficient to do basic simulations–I can see the potential.

What should we do, she asks? “Make it rain,” I reply. We center a cloud over an area on the edge of New York that was hard-hit by Superstorm Sandy and unleash 2.5 inches of rain. Within two hours, widening blue ribbons streak across the area. After five, the water has drained from the higher ground. Even after a day, low-lying coastal areas are still wet.

If you were to choose a person who best represents how Dutch thinking about water management has evolved over the past two decades, it might not be an engineer or architect at all. In fact, it might be Tracy Metz, who was appointed in 2007 to a national task force convened to propose ideas for the next 50 years of flood preparedness. Metz was, in her own words, “a representative of the people.” She was a journalist, with a typical awareness of the importance of water in the country’s past as well as in its policy making–an awareness reinforced by the 200-to-300-euro-per-person levy that every resident pays for local flood protection. But beyond her own story–born in Los Angeles, she moved to the Netherlands in the 1980s and jokes about growing up in a place with too little water, only to end up in one with too much–she says she was no water expert.

Over time, she became one. She learned that the dream of Holland as watertight fortress–canals are moats, straighter rivers are safer rivers, higher walls are better walls–is compelling but flawed. She discovered that the materials deployed in the Deltaworks, the country’s coastal bulwark, were sophisticated, but the methodology was essentially “the way they’ve done it from the Middle Ages.” Last year, she wrote Sweet & Salt: Water and the Dutch, the seminal book on Dutch water management. One of the book’s lessons is how Metz’s own education coincided with a shift in the official Dutch mind-set: They now accept that Mother Nature may be hard to tame but she seems willing to partner. “We used to defend against the water as our enemy,” Metz says. “You could say that there’s a new attitude: Water as our frenemy.”

This attitude has become as crucial to the Dutch as their technical sophistication–if not more so. And once again, floods helped bring about the change. In 1993 and 1995, as Deltaworks finally neared completion, floods hit the Dutch from behind. The Rhine, Meuse, and Waal rivers swelled with Alpine snowmelt, forcing 250,000 people from their homes. The decision was made to strengthen river defenses, but this time in a different way. For centuries, the Dutch had tried to channel rivers and streams into ever-narrower courses and canals. But gradually they came to realize that river systems were akin to greyhounds; you can try to confine them to small spaces, but they will always need room to run.

Hence, Room for the River, an initiative with 34 interconnected projects, including, most ambitiously, the digging of a new 2.5-mile channel in the city of Nijmegen that will alleviate the pressure at a particularly tricky bend in the river and create an island from what was a peninsula. In some places, dikes will be bolstered and raised. In others, they’ll be lowered, a radical, even heretical notion in a land where dikes have been piled ever higher for more than a millennium.

The largest dike to be lowered will be in the Noordwaard, an area in the southwestern Netherlands. For the past century, this area has been polder–wetland turned into fertile fields. Within the next two years, a 1.5-mile stretch of a 25-foot-tall dike will be lowered by 10 feet, creating new spillways for the New Merwede River. Nearly 8 square miles of fields once planted with potatoes and wheat will be “depolderized,” with large portions of the land flooding during times of high water.

Dikes are relatively easy to deconstruct. But entire livelihoods–especially those of a people who have, for centuries, clawed dry land from sea and swamp–are tougher. “This is a national safety project. But even with national aims, we have had to deal with personal interests,” says Hans Brouwer, a senior river expert with Rijkswaterstaat, the federal agency for flood protection. Fifteen farms were condemned, along with low-lying homes that will be threatened by the new spillways. “There were 75 families living in the Noordwaard. Forty will stay. It has been difficult. It has been painful.”

The government has done little to buy influence, refusing to pay above market for condemned properties. But neither has it deployed eminent domain. Vic Gremmer, a social worker who moved to the Noordwaard “to stay in nature,” says his payoff and the building subsidies offered by the authorities didn’t cover the costs of his new land and construction of his new house, down the road and up a small but significant rise from the old one. “We lived there for 21 years,” he says as we sip coffee in his new kitchen. He gazes out at his new patio and the new reed-edged canal beyond that. “We’ve got this new house, and these beautiful sights. But the old house, we were used to it–the keys go here, that goes there. Our children were born there.”

Perhaps the most innovative element of Room for the River is how officials built relationships with those whom the program will displace. Room for the River has project managers whose main job is to talk with residents. One whom I met was formerly a political lobbyist at EU headquarters in Brussels. He calls his current work “lobbying at the kitchen-table level.” The long-term approach in the Noordwaard has relied heavily on humility; officials repeatedly struck various compromises to help win residents’ support–or at least acquiescence. And slowly, through these conversations–15 years and counting–the officials helped Gremmer and most of his neighbors to understand the science behind the project as well as the necessity.

An effort like the depolderization–and more broadly, Room for the River–“is not only about engineering and design and technical innovation. It’s also about collaboration, a regional approach, and a mind-set,” says Henk Ovink, a former director-general at the Dutch Ministry of Infrastructure and the Environment, who has been exported to Washington, D.C., to serve as special adviser to Shaun Donovan, secretary of housing and urban development. “You can’t build a levee with a mind-set–you need money, you need ideas, and you need innovation. At the same time, you will never build those things if the mind-set isn’t right.”

Gremmer says there’s much to like about his new home. It sits 13 feet above sea level, so it’s unquestionably safer. He’s an avid birdwatcher, and a variety of species have been arriving in greater numbers. And if he’s hungry for fish, he just slides open the big glass doors to his patio and casts his line. The canal out back teems with eel, carp, and his favorite, snoekbaars–pike-perch. “Filet it,” he says. “Put it in a pan with a little bit of lemon, salt, pepper, butter. Delicious.”

“Are you happy here?” I ask.

He sighs a little before replying: “We’re not there yet.”

Click here to read the article

Click here for the website

Back To Top
Search